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Gibbs-ensemble molecular dynamics: Liquid-gas equilibrium in a Lennard-Jones system
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We present an algorithm for the simulation of phase equilibria by using the Gibbs-ensemble method in
combination with the molecular dynamics approach. It is shown that in the thermodynamic limit the so
obtained Gibbs-ensemble averages are equivalent to the averages in the generalized (u,P,T) ensemble.
As a first test, we apply our Gibbs-ensemble molecular dynamics algorithm to a Lennard-Jones system

with a cut and shifted potential.

PACS number(s): 61.20.Ja, 05.20.Gg, 64.70.Fx

Several years ago Panagiotopoulos proposed the so-
called Gibbs-ensemble Monte-Carlo (GEMC) technique
for the direct computer simulation of phase coexistence
in liquids and liquid mixtures (cf. the review [1]). The
idea of the method is best illustrated for the case of
liquid-gas coexistence in a one-component fluid. Con-
trary to the usual simulations with a fluid system con-
tained in a single box, the GEMC method employs two
separate boxes, which are at the same temperature and
pressure. In addition, they can exchange particles ensur-
ing the equality of the chemical potential in both boxes.
For a specified temperature, and with the proper choice
of the total volume, the system may phase separate in
such a way, that there will be the pure liquid in one box
and the coexisting pure gas in the other.

Until recently, no molecular dynamics (MD) analog of
GEMC did exist, even though Gibbs-ensemble molecular
dynamics (GEMD) is a potentially useful alternative for
dense systems with a complicated molecular structure [2].
The first GEMD calculation for a Lennard-Jones (LJ)
fluid was presented by Palmer and Lo [3]. Here we
present a different GEMD method, which, for example,
allows all the particles to be transferred simultaneously
instead of just one at a time as in Ref. [3].

In conventional MD one solves the equations of
motion numerically for a system of N particles contained
in a box of volume V. The total potential energy of the
system U is usually written as the sum of pair interac-
tions ®(7;), ie., U({F;})=3, ;P(7};), where the 7; are
the particle coordinates and 7;=7;—7;. In order to
simulate a variable number of atoms in each of the two
boxes we introduce an extra (fourth) degree of freedom &;
for every particle in addition to its Cartesian coordinates.
&; can vary between 1 and 0, where §; =1 means that par-
ticle 7 is in box 1, whereas £; =0 means that it is in box 2.
For 1> ;>0 the particle is in a “transition state,” where
it is sensed in both boxes. Thus, we rewrite the potential
energy of the system as a function of the coordinates and
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where V| and V, are the volumes of the two boxes. The
first two terms, U; and U,, represent the potential ener-
gies of the first and the second box, respectively. Notice,
that as soon as we apply periodic boundary conditions
and interparticle interactions are calculated between
particle’s closest images, the distance between them, and,
therefore, the potential energy, is a function of the box
dimensions (or the volume if the box shape is kept fixed).
As in GEMC, the particle transfer is controlled by the
difference between their potential energies in the two
boxes. The number of unphysical, but necessary, transi-
tion state particles can be made small in comparison to
the overall number of particles, by introducing an addi-
tional potential function g (£;) =0, which is equal to zero
only at £;=0 and at §;=1. One suitable choice of g (§;),
which we use here, is g(&;)=w{tanh(u§;)+tanh[u(1
—&;)]—1} for 0=§;=1 and g(§;)= o otherwise. It in-
troduces a barrier of height w and steepness u between
the states corresponding to the ‘“real” particles, which
are entirely in one or the other of the two boxes, making
the transition states unfavorable.

The pressure as well as the chemical potential, even
though they are not explicitly specified, should be equal
in the two phases and thus in the two boxes. Similar to
the GEMC method this can be achieved if every change
of the volume of one of the boxes is accompanied by an
opposite but equal change of the volume of the other box.
Thus, the total volume V=V;+V, of the two boxes is
constant, while the individual volumes are variable. The
volume changes are controlled by the difference between
the instantaneous values of the pressures in the two
boxes. Here, for each box we employ the constant-
pressure MD algorithm proposed in Ref. [4]. In this al-
gorithm the 7; are not scaled by the box dimensions and
they are not mapped back into the box according to the
boundary conditions whenever a particle leaves the pri-
mary box and enters one of the surrounding image boxes
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[4]. The coupling to the volume fluctuations rather hap-
pens through the positions of the image particles, which
is an advantage in the present context.

The equations of motion for the Gibbs-ensemble
molecular dynamics (GEMD) approach proposed here,
and which we are going to justify below, are given by
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Here, p; and p, are the momenta conjugate to the Carte-

sian coordinates 7; and the transfer coordinate £;, respec-
tively. 7 is an additional degree of freedom and Q; is a
parameter, governing the temperature relaxation. Note
that the first three equations described the evolution of a
system coupled to an external heat bath with the temper-
ature T [5], where X is a coefficient, which, as we shall see
below, must be equal to the number of degrees of freedom
coupled to the thermostat. The next two equations

govern the evolution of the £; and thus the transfer of the
J
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particles between the boxes. In the last two equations,
Py, is a momentum variable conjugate to ¥, and Qp is a

parameter governing the relaxation of the volume. Final-
ly, P§ and P$ are the “external” pressures [4] of the two
boxes. Note that the last two equations, i.e., Py, =QpV)

and ;';,,1=P§— 5, are the equations of motion for the
box volume in the constant-pressure algorithm proposed
in Ref. [4] (cf. also Eq. (16) in Ref. [6]), where, because in
this reference only a single box is considered, P$ is just
the preassigned pressure. In order to show that

—P5=—0U/3V, we must realize first that U /3V,
=9U,/0V,+aU,/0V,=aU,/dV,—aU,/aV,. Second,
considering the first box only, the interparticle pair in-
teraction energy is <I>(r,J, V, )§,§J ®(r;—7; —R,,)E;,
where Rl =V13(n, »hy,n,) is a vector, that maps
the separation of the coordinates 7; and 7; into the proper
distance between the particles i and j according to the
minimum image convention (assuming a cubic box). The
ny,n,,n, are integers. Because it is only R, that de-
pends on V', we can write

E§,§]V~ (7, V1)-8R

i>j

and thus
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However, this is just Eq. (21) obtained in Ref. [4] for the
instantaneous external pressure (where of course
§;=§&;=1). The same argument applies to the second
box.

To analyze the thermodynamic properties of the en-
semble described by the above set of equations of motion,
we use the same arguments as were used by Hoover in the
context of a constant temperature MD algorithm [5]. In
the present case the generalized Liouville’s equation,
which describes the evolution of the phase space density
distribution as a function of time, including the flow
along the ¥V, 7, and §&; directions, is
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By direct substitution and using the above equations of motion, one can see that the following density function:
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represents an equilibrium solution, provided that X =3N. Thus, assuming ergodicity, trajectory averages based on the
above equations of motion are equivalent to the corresponding averages calculated with this distribution.

Next we want to show that the averages, obtained with f for each one of the boxes, are in fact equivalent to constant
(u, P, T )-ensemble averages in the thermodynamic limit, provided that the number of the particles in the transition
state is small. The GEMD trajectory average of some quantity 4, which depends on the coordinates and the momenta

of the particles 1, . . .

, n, residing for example in the first box, is given by



5118 BRIEF REPORTS ‘ 51
(A)6Emp= ——~—fd§”dr3Ndp3NdV1A(r1, A N
QGEMD
X exp [—(l/kBT) [U({?}},{gi},Vl)+2_}2/2mi H ,
where

Qtemp = [ dENdr*Ndp*NdV exp [—(l/kBT) [U({?,-},{g,»},Vl )+ S52/2m, ] ] i

Here we have already performed the integration over 7, p¢ , and Py, and we have canceled the respective factors in the

numerator and the denominator, as indicated by the primed Q ggmp- By choosing a proper w in g(€;) we can make the
number of particles in the transition state negligibly small. In this case we can also replace the integration over the &;
by the summation over all possible combinations of their values (0 or 1). Notice that for each value of n there are
N!/(n!/(N—n)!) equivalent terms corresponding to the same number of ways of distributing the total number of N dis-

tinguishable partlcles between the two volumes. Thus { 4 ) ggyp becomes

(4)= s M

QGEMDn o n (N —n)!
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where the expression for Q Ggmp transforms analogously.
In addition, the integration over the coordinates and the
momenta of the N-n particles belonging to the second
box is just equal to Qy_,y rh AN=m(N —n)l, where

ON—»n, v, T is the partition function of the isochoric-

isothermal (N —n,V,, T) ensemble.

Next we show that the partition function of a
(N',V',T') ensemble can be related to the partition func-
tion of the isobaric-isothermal (N',P’,T’) ensemble. The
pressure P’ is the average pressure in the (N, V', T") en-
semble [or vice versa—FV’ being the average volume in
the (N',P',T’') ensemble] via a Laplace transformation
with respect to V', which can be evaluated by applying
the saddle-point method (7], i.e.,

Oy, p7= EGXP k T On v, 1
_ NY(PV+FHW,T'))
_ PV
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as well as the corresponding expression for QgGgmps
where the double prime is just a reminder that the com-
mon factors were canceled and that we keep only the
leading contribution in the limit of a large number of par-
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|dimensionless [8], k=(V'3%F /3V'?)~! - is the compres-
sibility, and v'=V'/N’ and F(T',v')=F(T',N'v')/N’
are the volume and the free energy per particle in the
(N',V',T') ensemble, respectively. Bars indicate saddle-
point values. Applying this to our case, ie.,
V= V,, T'=T, N'=N—n, and P'=P, the pressure in
the second box, we obtain

pP,v, 1

VN —n

ON—n,v,,1=CQN—np, XD

XV V2 /2mkkg Tv[1+O((N —n)"1)] .
Finally, we rewrite Qy _, P, T in term of Qy P,T

ON—np,,T

Han

exp

b

Onp,T

where u, is the chemical potential in the second box [9].
Now we can put everything together, i.e., we replace
ON—n, V)T in ( 4 )gemp by the saddle-point approxima-
tion and subsequently express Qy_, P,,T via the above
relation. Canceling the terms independent of n, ie.,
N, B3, On,p, 1> €Xp(PyV /kpT), ..., between numer-

ator and denominator, we obtain in the thermodynamic
limit

nxﬁl"'i;)

exp |—(1/kgT) 2<I>(r,J,V1)+ S p?/2m,

i>j i=1

[
ticles. Thus { 4 )ggmp coincides with the averages of 4
in the generalized constant (u,P,T) ensemble [10]. No-
tice, that the average over the first box is calculated with
the pressure and chemical potential of the second box,
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which shows the equality of these values in both boxes.

As a first test of our method we calculate the liquid-gas
coexistence curves for a system of 250 LJ particles, i.e.,
®(r)=4¢[(o /r)?>—(0o /r)°] with e=1 and 0 =1. In ad-
dition we cut the potential at »=2.5 and shift it, so that
the potential is zero for r=2.5. The liquid-gas coex-
istence curve is very sensitive to the cutoff of the poten-
tial [11,12], therefore, we compare our results with re-
sults obtained via an analytical approximation [11] as
well as via GEMC simulations [13] for exactly the same
system. As we pointed out before, it is important to
maintain a low (but nonzero) number of particles in the
transition state. We find, that in our case the values
w=0.1 and » =100 yield both reasonably fast exchange
of the particles between the boxes and a low population
of the transition state at the same time, i.e., we find that
in equilibrium for more than 95% of particles
0<&; <107 % 0or 0.9999 < £; < 1. Therefore, we can assign
these particles to the first and the second box, respective-
ly, whereas all the others are considered to be in the tran-
sition state. The values of the other parameters used here
are Qr=Qp =100, m; =15 me =10m;. A detailed dis-
cussion of these parameters in a broader context is forth-
coming in Ref. [14] dealing with both the LJ system as
well as with a simple but realistic molecular system. Fig-
ure 1 shows the so obtained densities of the coexisting gas
and liquid phases for different temperatures. The values
compare quite well with the results of the previous
GEMC simulation [13] as well as with the analytical ap-
proximation in Ref. [11].

Following the procedure discussed in detail in Refs.
[13] and [15] we estimate the critical temperature T, and
the critical density p, from the GEMD results by fitting
the simulated densities in Fig. 1 in the range 7 > 0.85 by
p+=p.+C(1—T/T,)+C,(1—T /T, (cf. also [16).
Note that here the law of rectilinear diameters
(p1+pg)/2=p,+C(1—T/T,) and the power law
behavior p; —p, =2C,(1—-T/T, )8 are assumed. In addi-
tion we use the three-dimensional Ising exponent 5=0.32
as in Refs. [13] and [15]. Thus we obtain
T,=1.097+0.004 and p,=0.327£0.004, in close accord
with the GEMC result 7, =1.085+0.005 and p,=0.317
+0.006 [13].

In conclusion, we would like to mention that we com-
pared the results obtained with the Nose-Hoover ther-
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FIG. 1. Liquid-gas coexistence densities versus temperature.
Here the temperature is in units of € and density in p;0°, where
pi (i=1,2) is the number density in the respective box. Filled
symbols: GEMD; hollow symbols: GEMC result of Ref. [13].
Circles: liquid densities; squares: gas densities; triangles: aver-
age densities; crosses: analytical approximation of Ref. [11].
The error bars indicate standard deviations. The lines (solid:
GEMD, dashed: GEMC) are fits as described in the text.

mostat [S5] with the analogous results obtained with the
thermostat proposed by Berendsen et al. [17]. Even
though only for the former case can one prove that the
algorithm does reproduce a canonical ensemble, the ob-
tained coexisting densities were the same within the sta-
tistical error in both cases. The second algorithm is how-
ever more stable numerically and most of the results
presented here were obtained with it. The same results
were also obtained using the standard virial formula for
the pressure instead of the external pressure [4]. This is
natural, as it was shown in Ref. [4] that, although the in-
stantaneous values of the two pressures are different,
their averages are the same in both cases.
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